Analysis of polarization methods for elimination of power overshoot in microbial fuel cells

نویسندگان

  • Valerie J. Watson
  • Bruce E. Logan
چکیده

a r t i c l e i n f o Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as " power overshoot ". Linear sweep voltammetry (LSV, 1 mV s − 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems. Much of the research involving the use of microbial fuel cells (MFC) for combined electricity production and wastewater treatment is focused on producing the most power through improved reactor designs [1]. However, estimates of the amount of power that can be produced in an MFC are a function of the technique used to obtain polarization data. Linear sweep voltammetry (LSV) is commonly used in MFC studies to obtain polarization data, but high scan rates can overestimate power production [2]. An alternate approach is to vary the circuit resistance at fixed time intervals, ranging from 10 s to 24 h [3,4]. There have been few studies comparing the different techniques , but in one study it was found that power production with scan rates higher than 0.1 mV s − 1 produced higher power densities than those where the circuit resistance was varied [2]. A common problem often encountered when evaluating polarization curves is " power overshoot " [2,5–7]. Power overshoot refers to the response of the system at high current densities (past the maximum power) in a power density curve where the cell voltage and current drop very quickly resulting in a doubling back of the power density curve, producing lower power than previously measured for the lower …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.

Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different a...

متن کامل

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

The overshoot phenomenon as a function of internal resistance in microbial fuel cells.

A method for assessing the performance of microbial fuel cells (MFCs) is the polarisation sweep where different external resistances are applied at set intervals (sample rates). The resulting power curves often exhibit an overshoot where both power and current decrease concomitantly. To investigate these phenomena, small-scale (1 mL volume) MFCs operated in continuous flow were subjected to pol...

متن کامل

Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions

Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...

متن کامل

Experimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization

Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010